A characterization of Cayley Hypersurface and Eastwood and Ezhov conjecture
نویسنده
چکیده
Eastwood and Ezhov generalized the Cayley surface to the Cayley hypersurface in each dimension, proved some characteristic properties of the Cayley hypersurface and conjectured that a homogeneous hypersurface in affine space satisfying these properties must be the Cayley hypersurface. We will prove this conjecture when the domain bounded by a graph of a function defined on Rn is also homogeneous giving a characterization of Cayley hypersurface. The idea of the proof is to look at the problem of affine homogeneous hypersurfaces as that of left symmetric algebras with a Hessian type inner product. This method gives a new insight and powerful algebraic tools for the study of homogeneous affine hypersurfaces.
منابع مشابه
$L_1$-Biharmonic Hypersurfaces in Euclidean Spaces with Three Distinct Principal Curvatures
Chen's biharmonic conjecture is well-known and stays open: The only biharmonic submanifolds of Euclidean spaces are the minimal ones. In this paper, we consider an advanced version of the conjecture, replacing $Delta$ by its extension, $L_1$-operator ($L_1$-conjecture). The $L_1$-conjecture states that any $L_1$-biharmonic Euclidean hypersurface is 1-minimal. We prove that the $L_1$-conje...
متن کاملA ug 2 00 4 TOWARDS A CLASSIFICATION OF HOMOGENEOUS TUBE DOMAINS IN C 4
We classify the tube domains in C 4 with affinely homogeneous base whose boundary contains a non-degenerate affinely homogeneous hypersurface. It follows that these domains are holo-morphically homogeneous and amongst them there are four new examples of unbounded homogeneous domains (that do not have bounded realisations). These domains lie to either side of a pair of Levi-indefinite hypersurfa...
متن کاملCayley Hypersurfaces
This is the Cayley surface when N = 3. The next few are as follows. x4 = x1x3 + 1 2 x2 2 − x1 x2 + 1 4 x1 4 x5 = x1x4 + x2x3 − x1 x3 − x1x2 2 + x1 x2 − 1 5 x1 5 x6 = x1x5 + x2x4 + 1 2 x3 2 − x1 x4 − 2x1x2x3 − 1 3 x2 3 + x1 x3 + 3 2 x1 x2 2 − x1 x2 + 1 6 x1 . Since the first term in (1) is −xN and this is the only occurrence of this variable, these hypersurfaces are polynomial graphs over the re...
متن کاملModuli of Isolated Hypersurface Singularities
It was shown by J.N. Mather and S.S.-T. Yau that an isolated complex hypersurface singularity is completely determined by its moduli algebra. In this article it is shown, for the simple elliptic singularities, how to construct continuous invariants from the moduli algebras and, hence, associate invariants to the singularities themselves.
متن کاملOn the Zero-divisor Cayley Graph of a Finite Commutative Ring
Let R be a fnite commutative ring and N(R) be the set of non unit elements of R. The non unit graph of R, denoted by Gamma(R), is the graph obtained by setting all the elements of N(R) to be the vertices and defning distinct vertices x and y to be adjacent if and only if x - yin N(R). In this paper, the basic properties of Gamma(R) are investigated and some characterization results regarding co...
متن کامل